Quasi-finite modules for Lie superalgebras of infinite rank

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally finite basic classical simple Lie superalgebras

In this work, we study direct limits of finite dimensional basic classical simple Lie superalgebras and obtain the conjugacy classes of Cartan subalgebras under the group of automorphisms.

متن کامل

Quasi exactly solvable operators and Lie superalgebras

Linear operators preserving the direct sum of polynomial rings P(m)⊕P(n) are constructed. In the case |m − n| = 1 they correspond to atypical representations of the superalgebra osp(2,2). For |m − n| = 2 the generic, finite dimensional representations of the superalgebra q(2) are recovered. Examples of Hamiltonians possessing such a hidden algebra are analyzed. PACS numbers: 02.20.Sv, 03.65.Fd ...

متن کامل

A new class of modules for Toroidal Lie Superalgebras

In this paper we construct a large class of modules for toroidal Lie superalgebras. Toroidal Lie superalgebras are universal central extensions of g⊗A where g is a basic classical Lie superalgebra and A is Laurent polynomial ring in several variables. The case where g is a simple finite dimensional Lie algebra is included.

متن کامل

Kostant Homology Formulas for Oscillator Modules of Lie Superalgebras

We provide a systematic approach to obtain formulas for characters and Kostant u-homology groups of the oscillator modules of the finite dimensional general linear and ortho-symplectic superalgebras, via Howe dualities for infinite dimensional Lie algebras. Specializing these Lie superalgebras to Lie algebras, we recover, in a new way, formulas for Kostant homology groups of unitarizable highes...

متن کامل

Classification of finite-growth contragredient Lie superalgebras

A contragredient Lie superalgebra is a superalgebra defined by a Cartan matrix. In general, a contragredient Lie superalgebra is not finite dimensional, however it has a natural Z-grading by finite dimensional components. A contragredient Lie superalgebra has finite growth if the dimensions of these graded components depend polynomially on the degree. We discuss the classification of finite-gro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2005

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-05-03795-5